Past Events

1/ 03.04.19

Multiple Sclerosis

Mariana Dias


PhD Student

Lab Prof. Engelhardt

University of Bern

Corina Frick


PhD Student

Lab Prof. Mehling

University of Basel

Talk 1: Ultrastructural 3D analysis of T-cell diapedesis across the Blood-Brain Barrier

(Mariana Dias, PhD student at Engelhardt lab, TKI, University of Bern)

In multiple sclerosis, autoaggressive T cells cross the blood-brain barrier (BBB) and enter the CNS parenchyma promoting inflammation, demyelination and eventually neurodegeneration. T-cell diapedesis across the BBB can occur via a paracellular pathway across the endothelial junctions or via a transcellular pathway, through a pore across the endothelial cell body. However, the precise mechanisms underlying paracellular versus transcellular T-cell diapedesis across the BBB remain to be explored. Thus, the aim of the present study is to determine the subcellular structures formed during T-cell interaction with the BBB. To do so, we combined in vitro live cell imaging and serial block face scanning electron microscopy (SBF-SEM), to perform the analysis in a 3D ultrastructural level.

Talk 2: Nano-scale microfluidics to study 3D chemotaxis at the single cell level

(Corina Frick, PhD student at Mehling lab, Department of Biomedicine, University of Basel)

Chemotaxis of immune cells plays an important role in immune surveillance and inflammation. The mode of migration depends highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. We have developed a microfluidic migration device which allows to study immune cell migration in a 3D collagen environment in highly controlled diffusion-based chemokine gradients.

WhatsApp Image 2019-04-03 at
WhatsApp Image 2019-04-03 at

3/ 05.06.19

Funding Opportunities for Young


Leah Witton


Grants Office

University of Bern


Simone Rufener


Grants Office

University of Bern


Talk: Career and project funding opportunities in neuroscience for early career researchers

Presentation slides


4/ 03.07.19

Sleep Neuroscience

Lukas Oesch


PhD student

Adamantidis Lab

University of Bern


Arndt-Lukas Klaassen


PhD student

Rainer Lab

University of Fribourg


Talk 1: Activation of hypothlamic inhibitory neurons during REM sleep stabilizes appetite


(Lukas Oesch, PhD student in the Adamantidis Lab, University of Bern)


We show that GABAergic neurons in the lateral hypothalamus of mice simulataneously encode instantaneous feeding behavior and feeding history. Populations of feeding active neurons are activated during REM sleep and their silencing specifically durgin REM sleep but not wakefulness decreases subsequent food intake.


Talk 2: Basal forebrain contributions to brain state regulation during auditory learning and sleep


(Arndt-Lukas Klaassen, PhD student in the Rainer Lab, University of Fribourg)


The basal forebrain (BF) projections play an important role in modulating neural network states, for example by enhancing cortical responsivity as well as contributing to wake/sleep regulation. The BF projections regulate cerebral cortical function by providing the major source of cholinergic as well as GABA- and glutamatergic input to the neocortex. Here, we aim to investigate the neuromodulatory influence of the BF on brain state regulation by combining optogenetic stimulation in the ventral pallidum of the BF with electrophysiology in the anterior cingulate cortex (ACC) in rats.


5/ 02.10.19

Deep Brain Stimulation

Gerd Tinkhauser





Eduardo Martin Moraud





Talk 1: Combining Deep Brain Stimulation with physiology in Parkinson's Disease


(Gerd Tinkhauser, Inselspital, Bern)


Deep brain stimulation is an established treatment for Parkinson’s disease and other movement disorders. This therapy however is limited by the slow manual and error-prone programming algorithms to identify the optimal stimulation site and by the stimulation induced side-effects. Electrophysiological recordings from the basal ganglia, the structures where the electrodes are implanted, revealed the presence of electrophysiological markers related to the motor symptoms. Studying distribution and behavioral characteristics of these markers led to the first pilot studies toward automatized programming and closed-loop stimulation in Parkinson’s disease.


Talk 2: Towards closed-loop neuromodulation of brain and spinal circuits to alleviate gait and balance deficits in Parkinson's disease


(Eduardo Martin Moraud, CHUV, Lausanne)


Impairments of gait and balance are amongst the most incapacitating and least well-understood symptoms of Parkinson's disease (PD). Well-established neuromodulation therapies for PD, which are highly effective for the treatment of upper-limb motor signs, often exhibit modest results to alleviate gait deficits. This discrepancy is presumably due to the divergence in the nature and dynamics of the circuits that control leg versus upper limb movements.

To date, the brain signatures underlying leg motor function and dysfunction, their involvement in leg muscle recruitment and force modulation across locomotor activities, and their utility to help refine therapies remains unclear. Similarly, the impact of combining brain and spinal neuromodulation therapies to specifically address locomotor deficits remains controversial.

In this talk, I will present results on these two questions:
First, we aimed to identify the neural correlates of leg force modulation from local field potentials (LFPs) recorded from deep brain stimulation electrodes implanted in the subthalamic nucleus (STN) of patients with PD, and to leverage this framework to develop decoding algorithms able to automatically predict leg force intention in real-time.

Second, we employed brain-decoded intention to trigger and control spinal cord neuromodulation therapies during unconstrained movements in non-human primate model of PD.

These combined results confirm the capacity to leverage brain signals to decode force production and leg motor intention in real-time, and to further exploit them to provide personalised therapies of brain and spinal cord to address gait deficits.


2/ 01.05.19

Network Dynamics of

Chronic Pain

Robert Ganley



Lab Prof. Zeilhofer

University of Zurich

Mario A. Acuña



Lab Prof. Nevian

University of Bern

Mario Acuna.png

Talk 1: Cells and circuitry of stress-induced analgesia. Targets for chronic pain treatments ?

(Robert Ganley, Postdoc at Zeilhofer lab, University of Zurich)

We have identified a population of spinal cord inhibitory interneurons that are critical components of swim stress-induced analgesia, which are identified by the expression of the transcription factor Gbx1. These Gbx1-expressing interneurons are required for stress-induced analgesia but are not required for pain perception under normal conditions, and their activation is sufficient to produce a robust analgesia in all tested pain modalities. Spinal Gbx1-expressing neurons and the circuits that activate them represent potential targets for the treatment of chronic pain.

Talk 2: Neuronal network dynamics and sensory representation in the ACC

(Mario A. Acuña, Postdoc at Nevian lab, University of Bern)

Chronic pain affects to 20% of the European population; therefore, understanding the processes underlying such pain chronification is imperative. Accumulating evidence indicates that abnormal neuronal plasticity and a resulting hyperactivity of the anterior cingulate cortex (ACC) is the cause for the manifestation of the emotional distress that characterizes chronic pain conditions. However, how the functional organization of ACC neuronal microcircuits is affected in chronic pain is poorly understood. In this talk I will present the current advances we are making towards an understanding on how pain is represented in the mouse ACC using in-vivo 2-photon calcium imaging.

WhatsApp Image 2019-05-01 at
WhatsApp Image 2019-05-01 at

6/ 06.11.19

What is beyond Academia ?

Dr. Armand Mensen


Swiss 3RCC


Dr. Charles Finsterwald




Talk 1: From Psychologist, to Neuroscientist, to Scientific Officer


(Armand Mensen, Swiss 3RCC)


Armand will talk about his career path from obtaining his PhD, through his 6 year Post-doc career, and how he ended up as a Scientific Officer at the Swiss 3RCC, with a foot still in the door of the academic track... just in case.


Talk 2: From academia to a biotech startup


(Charles Finsterwald, GliaPharm)

GliaPharm is a Swiss biotech start-up company based in Geneva that develops innovative treatments against neurodegenerative disorders. GliaPharm’s therapeutic approach stems from pioneering work pursued for many years by Prof. Magistretti’s laboratory at EPFL (Lausanne). Based on the understanding of the role of glial cells in the course of neurodegenerative disorders, and the importance of the so-called astrocyte-neuron lactate shuttle (ANLS), GliaPharm is developing innovative therapeutic approaches by targeting those mechanisms.

GliaPharm was created in 2016 as a spinoff from EPFL, and moved one year later to the Campus Biotech in Geneva, where it has since been pursuing its drug development activities, currently at the preclinical stage. GliaPharm’s objective is to enter into clinical trials with its lead molecule by early 2022.


Dr. Charles Finsterwald is co-founder and the Chief Scientific Officer at GliaPharm. During his talk, Dr. Finsterwald will describe GliaPharm’s scope, therapeutic approach and history. He will also discuss his personal experience as a co-cofounder and working in a start-up company.


6/ 11.12.19

Intracranial hemorrhage

Martina Göldlin, MD


Inselspital, Bern

Kevin Akeret, MD


University Hospital Zurich

Talk 1: Risk factors and mechanisms of primary intracerebral haemorrhage from a clinical research perspective


(Martina Göldlin, Inselpital)


Intracerebral haemorrhage (ICH) is a devastating disease with few evidence-based therapeutic options, high morbidity and mortality. Understanding the risk factors and underlying mechanisms is key to improve future research approaches for prevention and therapy of ICH. This talk will provide insights from a clinical research perspective.


Talk 2: The pathophysiology of secondary brain damage after intracerebral hemorrhage and potential therapeutic targets


(Kevin Akeret, University Hospital Zurich)

After intracerebral hemorrhage, patients often deteriorate within days to a few weeks due to the development of secondary brain damage. Secondary neurodamage after intracerebral haemorrhage has a complex multiphasic pathopysiology. A better understanding of its individual phases, identification of its mediators and specific therapeutic targeting of such has the potential to minimize the development of secondary brain damage after intracerebral hemorrhage and to improve patient outcome.